Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 56(14): 2186-2189, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31971182

RESUMO

The intrinsic l-DNA binding properties of a natural DNA polymerase was discovered. The binding affinity of Dpo4 polymerase for l-DNA was comparable to that for d-DNA. The crystal structure of Dpo4/l-DNA complex revealed a dimer formed by the little finger domain that provides a binding site for l-DNA.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA/química , Cristalografia por Raios X , DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Conformação Proteica
2.
J Mol Biol ; 430(21): 4036-4048, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30092253

RESUMO

During lipopolysaccharide biosynthesis in several pathogens, including Burkholderia and Yersinia, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) 3-hydroxylase, otherwise referred to as KdoO, converts Kdo to d-glycero-d-talo-oct-2-ulosonic acid (Ko) in an Fe(II)/α-ketoglutarate (α-KG)/O2-dependent manner. This conversion renders the bacterial outer membrane more stable and resistant to stresses such as an acidic environment. KdoO is a membrane-associated, deoxy-sugar hydroxylase that does not show significant sequence identity with any known enzymes, and its structural information has not been previously reported. Here, we report the biochemical and structural characterization of KdoO, Minf_1012 (KdoMI), from Methylacidiphilum infernorum V4. The de novo structure of KdoMI apoprotein indicates that KdoOMI consists of 13 α helices and 11 ß strands, and has the jelly roll fold containing a metal binding motif, HXDX111H. Structures of KdoMI bound to Co(II), KdoMI bound to α-KG and Fe(III), and KdoMI bound to succinate and Fe(III), in addition to mutagenesis analysis, indicate that His146, His260, and Asp148 play critical roles in Fe(II) binding, while Arg127, Arg162, Arg174, and Trp176 stabilize α-KG. It was also observed that His225 is adjacent to the active site and plays an important role in the catalysis of KdoOMI without affecting substrate binding, possibly being involved in oxygen activation. The crystal structure of KdoOMI is the first completed structure of a deoxy-sugar hydroxylase, and the data presented here have provided mechanistic insights into deoxy-sugar hydroxylase, KdoO, and lipopolysaccharide biosynthesis.


Assuntos
Dioxigenases/química , Compostos Ferrosos/química , Ácidos Cetoglutáricos/química , Oxigenases de Função Mista/química , Modelos Moleculares , Oxigênio/química , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Fenômenos Bioquímicos , Dioxigenases/metabolismo , Compostos Ferrosos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Oxigênio/metabolismo
3.
Sci Transl Med ; 8(336): 336ra62, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122615

RESUMO

Development of an HIV vaccine is a global priority. A major roadblock to a vaccine is an inability to induce protective broadly neutralizing antibodies (bnAbs). HIV gp41 bnAbs have characteristics that predispose them to be controlled by tolerance. We used gp41 2F5 bnAb germline knock-in mice and macaques vaccinated with immunogens reactive with germline precursors to activate neutralizing antibodies. In germline knock-in mice, bnAb precursors were deleted, with remaining anergic B cells capable of being activated by germline-binding immunogens to make gp41-reactive immunoglobulin M (IgM). Immunized macaques made B cell clonal lineages targeted to the 2F5 bnAb epitope, but 2F5-like antibodies were either deleted or did not attain sufficient affinity for gp41-lipid complexes to achieve the neutralization potency of 2F5. Structural analysis of members of a vaccine-induced antibody lineage revealed that heavy chain complementarity-determining region 3 (HCDR3) hydrophobicity was important for neutralization. Thus, gp41 bnAbs are controlled by immune tolerance, requiring vaccination strategies to transiently circumvent tolerance controls.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/metabolismo , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/uso terapêutico , Animais , Anticorpos Neutralizantes/metabolismo , Linfócitos B/metabolismo , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Epitopos/imunologia , Epitopos/metabolismo , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Feminino , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Macaca mulatta , Masculino , Camundongos , Camundongos Mutantes
4.
FEBS Lett ; 590(4): 501-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26864964

RESUMO

Calcineurin heterodimer, comprised of the catalytic (CnaA) and regulatory (CnaB) subunits, localizes at the hyphal tips and septa to direct growth, septation, and disease in the human pathogen Aspergillus fumigatus. Here we discovered a novel motif (FMDVF) required for this critical CnaA septal localization, including residues Phe368, Asp370 and Phe372 overlapping the cyclosporine A-cyclophilin A-binding domain, CnaB-binding helix and the FK506-FKBP12-binding pocket. Mutations in adjacent residues Asn367, Trp374, and Ser375 confer FK506 resistance without impacting CnaA septal localization. Modeling A. fumigatus CnaA confirmed that the FMDVF motif forms a bridge between the two known substrate-binding motifs, PxIxIT and LxVP, and concurrent mutations (F368A D370A; F368A F372A) in the FMDVF motif disrupt CnaA-substrate interaction at the septum.


Assuntos
Aspergillus fumigatus/metabolismo , Calcineurina/metabolismo , Domínio Catalítico , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Motivos de Aminoácidos , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Calcineurina/química , Calcineurina/genética , Ciclofilina A/química , Ciclosporina/química , Farmacorresistência Fúngica , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hifas/efeitos dos fármacos , Hifas/genética , Dados de Sequência Molecular , Mutação , Multimerização Proteica , Especificidade por Substrato , Tacrolimo/farmacologia
5.
Nat Struct Mol Biol ; 23(2): 147-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26727490

RESUMO

Heat-shock transcription factor (HSF) family members function in stress protection and in human diseases including proteopathies, neurodegeneration and cancer. The mechanisms that drive distinct post-translational modifications, cofactor recruitment and target-gene activation for specific HSF paralogs are unknown. We present crystal structures of the human HSF2 DNA-binding domain (DBD) bound to DNA, revealing an unprecedented view of HSFs that provides insights into their unique biology. The HSF2 DBD structures resolve a new C-terminal helix that directs wrapping of the coiled-coil domain around DNA, thereby exposing paralog-specific sequences of the DBD surface for differential post-translational modifications and cofactor interactions. We further demonstrate a direct interaction between HSF1 and HSF2 through their coiled-coil domains. Together, these features provide a new model for HSF structure as the basis for differential and combinatorial regulation, which influences the transcriptional response to cellular stress.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Sumoilação
6.
J Biol Chem ; 291(7): 3520-30, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26663084

RESUMO

The type I fatty acid synthase (FASN) is responsible for the de novo synthesis of palmitate. Chain length selection and release is performed by the C-terminal thioesterase domain (TE1). FASN expression is up-regulated in cancer, and its activity levels are controlled by gene dosage and transcriptional and post-translational mechanisms. In addition, the chain length of fatty acids produced by FASN is controlled by a type II thioesterase called TE2 (E.C. 3.1.2.14). TE2 has been implicated in breast cancer and generates a broad lipid distribution within milk. The molecular basis for the ability of the TE2 to compete with TE1 for the acyl chain attached to the acyl carrier protein (ACP) domain of FASN is unknown. Herein, we show that human TE1 efficiently hydrolyzes acyl-CoA substrate mimetics. In contrast, TE2 prefers an engineered human acyl-ACP substrate and readily releases short chain fatty acids from full-length FASN during turnover. The 2.8 Å crystal structure of TE2 reveals a novel capping domain insert within the α/ß hydrolase core. This domain is reminiscent of capping domains of type II thioesterases involved in polyketide synthesis. The structure also reveals that the capping domain had collapsed onto the active site containing the Ser-101-His-237-Asp-212 catalytic triad. This observation suggests that the capping domain opens to enable the ACP domain to dock and to place the acyl chain and 4'-phosphopantetheinyl-linker arm correctly for catalysis. Thus, the ability of TE2 to prematurely release fatty acids from FASN parallels the role of editing thioesterases involved in polyketide and non-ribosomal peptide synthase synthases.


Assuntos
Acil Coenzima A/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Modelos Moleculares , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Acil Coenzima A/química , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Ácido Graxo Sintase Tipo I/química , Ácidos Graxos Voláteis/química , Ácidos Graxos Voláteis/metabolismo , Humanos , Hidrólise , Peso Molecular , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
7.
FEBS Lett ; 589(18): 2340-6, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26226427

RESUMO

A target with therapeutic potential, lysine-specific demethylase 1A (KDM1A) is a regulator of gene expression whose tower domain is a protein-protein interaction motif. This domain facilitates the interaction of KDM1A with coregulators and multiprotein complexes that direct its activity to nucleosomes. We describe the design and characterization of a chimeric 'towerless' KDM1A, termed nΔ150 KDM1AΔTower KDM1B chimera (chKDM1AΔTower), which incorporates a region from the paralog lysine-specific demethylase 1B (KDM1B). This chimera copurifies with FAD and displays demethylase activity, but fails to bind the partner protein corepressor of the RE1-silencing transcription factor (CoREST). We conclude that KDM1A catalysis can be decoupled from tower-dependent interactions, lending chKDM1AΔTower useful for dissecting molecular contributions to KDM1A function.


Assuntos
Histona Desmetilases/química , Histona Desmetilases/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Sequência de Aminoácidos , Histona Desmetilases/genética , Histona Desmetilases/isolamento & purificação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
8.
Structure ; 22(10): 1467-77, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25295398

RESUMO

The Staphylococcus aureus virulence factor staphylococcal protein A (SpA) is a major contributor to bacterial evasion of the host immune system, through high-affinity binding to host proteins such as antibodies. SpA includes five small three-helix-bundle domains (E-D-A-B-C) separated by conserved flexible linkers. Prior attempts to crystallize individual domains in the absence of a binding partner have apparently been unsuccessful. There have also been no previous structures of tandem domains. Here we report the high-resolution crystal structures of a single C domain, and of two B domains connected by the conserved linker. Both structures exhibit extensive multiscale conformational heterogeneity, which required novel modeling protocols. Comparison of domain structures shows that helix1 orientation is especially heterogeneous, coordinated with changes in side chain conformational networks and contacting protein interfaces. This represents the kind of structural plasticity that could enable SpA to bind multiple partners.


Assuntos
Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Staphylococcus aureus/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína
9.
Nature ; 505(7483): 422-6, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24196711

RESUMO

Acyl carrier protein represents one of the most highly conserved proteins across all domains of life and is nature's way of transporting hydrocarbon chains in vivo. Notably, type II acyl carrier proteins serve as a crucial interaction hub in primary cellular metabolism by communicating transiently between partner enzymes of the numerous biosynthetic pathways. However, the highly transient nature of such interactions and the inherent conformational mobility of acyl carrier protein have stymied previous attempts to visualize structurally acyl carrier protein tied to an overall catalytic cycle. This is essential to understanding a fundamental aspect of cellular metabolism leading to compounds that are not only useful to the cell, but also of therapeutic value. For example, acyl carrier protein is central to the biosynthesis of the lipid A (endotoxin) component of lipopolysaccharides in Gram-negative microorganisms, which is required for their growth and survival, and is an activator of the mammalian host's immune system, thus emerging as an important therapeutic target. During lipid A synthesis (Raetz pathway), acyl carrier protein shuttles acyl intermediates linked to its prosthetic 4'-phosphopantetheine group among four acyltransferases, including LpxD. Here we report the crystal structures of three forms of Escherichia coli acyl carrier protein engaging LpxD, which represent stalled substrate and liberated products along the reaction coordinate. The structures show the intricate interactions at the interface that optimally position acyl carrier protein for acyl delivery and that directly involve the pantetheinyl group. Conformational differences among the stalled acyl carrier proteins provide the molecular basis for the association-dissociation process. An unanticipated conformational shift of 4'-phosphopantetheine groups within the LpxD catalytic chamber shows an unprecedented role of acyl carrier protein in product release.


Assuntos
Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Biocatálise , Escherichia coli/química , Lipídeo A/biossíntese , Aciltransferases/química , Aciltransferases/metabolismo , Cristalografia por Raios X , Hidrólise , Lipídeo A/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica
10.
Biochemistry ; 52(13): 2280-90, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23464738

RESUMO

The sixth step in the lipid A biosynthetic pathway involves phosphorylation of the tetraacyldisaccharide-1-phosphate (DSMP) intermediate by the cytosol-facing inner membrane kinase LpxK, a member of the P-loop-containing nucleoside triphosphate (NTP) hydrolase superfamily. We report the kinetic characterization of LpxK from Aquifex aeolicus and the crystal structures of LpxK in complex with ATP in a precatalytic binding state, the ATP analogue AMP-PCP in the closed catalytically competent conformation, and a chloride anion revealing an inhibitory conformation of the nucleotide-binding P-loop. We demonstrate that LpxK activity in vitro requires the presence of a detergent micelle and formation of a ternary LpxK-ATP/Mg(2+)-DSMP complex. Using steady-state kinetics, we have identified crucial active site residues, leading to the proposal that the interaction of D99 with H261 acts to increase the pKa of the imidazole moiety, which in turn serves as the catalytic base to deprotonate the 4'-hydroxyl of the DSMP substrate. The fact that an analogous mechanism has not yet been observed for other P-loop kinases highlights LpxK as a distinct member of the P-loop kinase family, a notion that is also reflected through its localization at the membrane, lipid substrate, and overall structure.


Assuntos
Bactérias/enzimologia , Lipídeo A/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Detergentes/metabolismo , Cinética , Magnésio/metabolismo , Modelos Moleculares , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Mutação Puntual , Conformação Proteica
11.
Proc Natl Acad Sci U S A ; 109(32): 12956-61, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826246

RESUMO

In Gram-negative bacteria, the hydrophobic anchor of the outer membrane lipopolysaccharide is lipid A, a saccharolipid that plays key roles in both viability and pathogenicity of these organisms. The tetraacyldisaccharide 4'-kinase (LpxK) of the diverse P-loop-containing nucleoside triphosphate hydrolase superfamily catalyzes the sixth step in the biosynthetic pathway of lipid A, and is the only known P-loop kinase to act upon a lipid substrate at the membrane. Here, we report the crystal structures of apo- and ADP/Mg(2+)-bound forms of Aquifex aeolicus LpxK to a resolution of 1.9 Å and 2.2 Å, respectively. LpxK consists of two α/ß/α sandwich domains connected by a two-stranded ß-sheet linker. The N-terminal domain, which has most structural homology to other family members, is responsible for catalysis at the P-loop and positioning of the disaccharide-1-phosphate substrate for phosphoryl transfer on the inner membrane. The smaller C-terminal domain, a substructure unique to LpxK, helps bind the nucleotide substrate and Mg(2+) cation using a 25° hinge motion about its base. Activity was severely reduced in alanine point mutants of conserved residues D138 and D139, which are not directly involved in ADP or Mg(2+) binding in our structures, indicating possible roles in phosphoryl acceptor positioning or catalysis. Combined structural and kinetic studies have led to an increased understanding of the enzymatic mechanism of LpxK and provided the framework for structure-based antimicrobial design.


Assuntos
Vias Biossintéticas/fisiologia , Bactérias Aeróbias Gram-Negativas/enzimologia , Lipídeo A/biossíntese , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/química , Conformação Proteica , Vias Biossintéticas/genética , Cromatografia em Camada Fina , Cristalografia por Raios X , Primers do DNA/genética , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Mutação Puntual/genética
12.
Structure ; 20(7): 1189-200, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22658750

RESUMO

Helicases move on DNA via an ATP binding and hydrolysis mechanism coordinated by well-characterized helicase motifs. However, the translocation along single-stranded DNA (ssDNA) and the strand separation of double-stranded (dsDNA) may be loosely or tightly coupled. Dda is a phage T4 SF1B helicase with sequence homology to the Pif1 family of helicases that tightly couples translocation to strand separation. The crystal structure of the Dda-ssDNA binary complex reveals a domain referred to as the "pin" that was previously thought to remain static during strand separation. The pin contains a conserved phenylalanine that mediates a transient base-stacking interaction that is absolutely required for separation of dsDNA. The pin is secured at its tip by protein-protein interactions through an extended SH3 domain thereby creating a rigid strut. The conserved interface between the pin and the SH3 domain provides the mechanism for tight coupling of translocation to strand separation.


Assuntos
Bacteriófago T4/metabolismo , DNA Helicases/química , DNA de Cadeia Simples/química , DNA/química , Proteínas Virais/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacteriófago T4/genética , Cristalografia por Raios X , DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Proteínas Virais/genética , Proteínas Virais/metabolismo
13.
Sci Rep ; 2: 236, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355749

RESUMO

Rotation of the coiled-coil stalk of the kinesin-14 motors is thought to drive displacements or steps by the motor along microtubules, but the structural changes that trigger stalk rotation and the nucleotide state in which it occurs are not certain. Here we report a kinesin-14 neck mutant that releases ADP more slowly than wild type and shows weaker microtubule affinity, consistent with defective stalk rotation. Unexpectedly, crystal structures show the stalk fully rotated - neck-motor interactions destabilize the stalk, causing it to rotate and ADP to be released, and alter motor affinity for microtubules. A new structural pathway accounts for the coupling of stalk rotation - the force-producing stroke - to changes in motor affinity for nucleotide and microtubules. Sequential disruption of salt bridges that stabilize the unrotated stalk could cause the stalk to initiate and complete rotation in different nucleotide states.


Assuntos
Cinesinas/fisiologia , Cristalografia por Raios X , Cinesinas/química , Cinesinas/metabolismo , Cinética , Microtúbulos/metabolismo , Modelos Moleculares
14.
PLoS One ; 5(11): e14165, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21152407

RESUMO

The 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) enzymes catalyze sequential metabolic reactions in the folate biosynthetic pathway of bacteria and lower eukaryotes. Both enzymes represent validated targets for the development of novel anti-microbial therapies. We report herein that the genes which encode FtHPPK and FtDHPS from the biowarfare agent Francisella tularensis are fused into a single polypeptide. The potential of simultaneously targeting both modules with pterin binding inhibitors prompted us to characterize the molecular details of the multifunctional complex. Our high resolution crystallographic analyses reveal the structural organization between FtHPPK and FtDHPS which are tethered together by a short linker. Additional structural analyses of substrate complexes reveal that the active sites of each module are virtually indistinguishable from those of the monofunctional enzymes. The fused bifunctional enzyme therefore represents an excellent vehicle for finding inhibitors that engage the pterin binding pockets of both modules that have entirely different architectures. To demonstrate that this approach has the potential of producing novel two-hit inhibitors of the folate pathway, we identify and structurally characterize a fragment-like molecule that simultaneously engages both active sites. Our study provides a molecular framework to study the enzyme mechanisms of HPPK and DHPS, and to design novel and much needed therapeutic compounds to treat infectious diseases.


Assuntos
Di-Hidropteroato Sintase/química , Difosfotransferases/química , Francisella tularensis/enzimologia , Complexos Multienzimáticos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Di-Hidropteroato Sintase/genética , Di-Hidropteroato Sintase/metabolismo , Difosfotransferases/genética , Difosfotransferases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Expert Opin Investig Drugs ; 16(11): 1817-29, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17970640

RESUMO

Fatty acid synthase (FASN) is the enzyme that catalyzes the de novo synthesis of fatty acids in cells. Because of the strong expression in many cancers, FASN is an attractive and tractable target for therapeutic intervention. The discovery and development of pharmacologic agents that block FASN activity highlight the promise of these anticancer compounds. FASN inhibitors have also proven to be invaluable in developing a better understanding of the contribution of FASN and fatty acid synthesis to tumor cells. Recent advances in the development of crystal structures of FASN have provided promise towards the development of novel FASN inhibitors. This review outlines the preclinical development of FASN inhibitors, their antitumor effects and the strategies underway to develop novel inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Ácido Graxo Sintases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Morte Celular/efeitos dos fármacos , Desenho de Fármacos , Ácido Graxo Sintases/metabolismo , Humanos , Neoplasias/metabolismo
16.
Nat Struct Mol Biol ; 14(8): 704-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17618296

RESUMO

Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-A-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Ácido Graxo Sintases/química , Lactonas/química , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Humanos , Hidrólise , Modelos Moleculares , Orlistate , Estrutura Terciária de Proteína
17.
Tissue Eng ; 13(7): 1593-605, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17523878

RESUMO

In trying to assess the structural integrity of electrospun type II collagen scaffolds, a modified but new technique for cross-linking collagen has been developed. Carbodiimides have been previously used to cross-link collagen in gels and in lyophilized native tissue specimens but had not been used for electrospun mats until recently. This cross-linking agent, and in particular 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), is of extreme interest, especially for tissue-engineered scaffolds composed specifically of native polymers (e.g., collagen), because it is a zero-length cross-linking agent that has not been shown to cause any cytotoxic reactions. The unique aspect of the cross-linking protocol in this study involves the use of ethanol as the solvent for the cross-linking agent, because the pure collagen electrospun mats immediately disintegrate when placed in an aqueous solution. This study examines 2 concentrations of EDC with and without the addition of N-hydroxysuccinimide to the reaction (which has been shown to result in higher cross-linking yields in aqueous solutions) to test the hypothesis that the use of EDC in a nonaqueous solution will cross-link electrospun type II collagen fibrous matrices in a comparable manner to typical glutaraldehyde fixation protocols. The use of EDC is compared with the cross-linking effects of glutaraldehyde via mechanical testing (uniaxial tensile testing) and biochemical testing (analysis of the percentage of free amino groups). The stress-strain curves of the cross-linked samples demonstrated uniaxial tensile behavior more characteristic of native tissue than do the dry, untreated samples. The heated, 50% glutaraldehyde cross-linking protocol resulted in a mean peak stress of 0.76 MPa, a mean strain at break of 127.30%, and a mean tangential modulus of 0.89 MPa; mean values for the samples treated with the EDC protocols ranged from 0.35 to 0.60 MPa for peak stress, from 111.83 to 159.23% for strain at break, and from 0.57 to 0.92 MPa for tangential modulus. Low and high concentrations (20 mM and 200 mM, respectively) of EDC alone were comparable in extent of cross-linking (29% and 29%, respectively) to the heated 50% glutaraldehyde cross-linking protocol (30% cross-linked).


Assuntos
Materiais Biocompatíveis/química , Carbodi-Imidas , Colágeno Tipo II/química , Etanol , Engenharia Tecidual , Animais , Cartilagem Articular/química , Bovinos
18.
J Periodontol ; 73(8): 937-41, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12211504

RESUMO

BACKGROUND: Non-Hodgkin's lymphoma may arise in extranodal tissues within the head and neck region. These lesions may occur in the oral cavity, but rarely appear on the gingiva. Due to their malignant nature, rapid identification, diagnosis, and treatment of non-Hodgkin's lymphomas are essential to patient survival. METHODS: An unusual case of primary extranodal non-Hodgkin's lymphoma is described. The small lesion arose on the gingiva and alveolar mucosa. Upon excision, the tissue was submitted for microscopic examination, with the expectation that the lesion would be benign and excision would constitute the entirety of treatment. However, a diagnosis of primary extranodal large B-cell lymphoma was returned. RESULTS: In addition to excision of the lesion, the patient underwent a complete work-up to rule out other systemic lesions. Chemotherapy and radiation therapy were performed. The patient has remained healthy, without recurrence of lymphoma for 3 years. CONCLUSIONS: This case reinforces the importance of submitting excised tissues for microscopic examination even when the lesion appears totally benign. In addition, it highlights the need for complete excision of suspected lesions, with generous borders of normal tissue. With current periodontal plastic surgical techniques, most defects remaining after soft tissue biopsy can be managed with good esthetic results.


Assuntos
Neoplasias Gengivais/diagnóstico , Linfoma de Células B/diagnóstico , Linfoma Difuso de Grandes Células B/diagnóstico , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biópsia , Diagnóstico Diferencial , Intervalo Livre de Doença , Seguimentos , Humanos , Masculino , Mucosa Bucal/patologia , Neoplasias Bucais/patologia , Radioterapia Adjuvante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...